首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   16篇
  国内免费   9篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   11篇
  2014年   12篇
  2013年   9篇
  2012年   7篇
  2011年   11篇
  2010年   10篇
  2009年   9篇
  2008年   4篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   8篇
  1997年   10篇
  1996年   5篇
  1995年   2篇
  1994年   9篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1982年   4篇
  1977年   2篇
  1955年   1篇
  1954年   2篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
35.
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.  相似文献   
36.
Summary In order to identify factors necessary for the establishment of the reticulate pollen wall pattern, we have characterized a T-DNA tagged mutant ofArabidopsis thaliana that is defective in pattern formation. This study reports the results of an ultrastructural comparison of pollen wall formation in the mutant to wall development in wild-type plants. Pollen wall development in the mutant parallels that of wild-type until the early tetrad stage. At this point in wild-type plants, the microspore plasma membrane assumes a regular pattern of ridges and valleys. Initial sporopollenin deposition occurs on the ridges marking the beginning of probacula formation. In contrast, the plasma membrane in the mutant appears irregular with flattened protuberances and rare invaginations. As a result, the wild-type regular pattern of ridges and valleys is not formed. Sporopollenin is randomly deposited on the plasma membrane and aggregates on the locule wall; it is not anchored to the membrane. Our finding that the mutation blocks the normal invagination of the plasma membrane and disrupts the proper deposition of sporopollenin during wall formation suggests that the mutation could be in a gene responsible for pattern formation. These results also provide direct evidence that the plasma membrane plays a critical role in the establishment of the pollen wall pattern.  相似文献   
37.
铁皮石斛的离体开花   总被引:9,自引:0,他引:9  
铁皮石斛(Dendrobium candidum),为一种野生兰科植物,在栽培条件下,从种子萌发到开花通常需要3~4a.研究了多种植物激素和多胺对该种石斛组织培养中花芽形成的影响,结果表明在培养基中加入合适浓度的亚精胺(spermidine)或BA(6-苄基腺嘌呤),或同时加入NAA(萘乙酸)和BA均可诱导原球茎或由之形成的无根小苗在3~6个月开花,频率在31.6%~45.8%.当将原球茎在加有ABA(脱落酸)的培养基上预培养后再移到加有BA的培养基上,花芽形成的频率可提高到平均达82.8%(个别实验中可达100%),这种诱导提早开花的现象也与实验材料的发育阶段(原球茎、无根小苗、已生根的小苗)有关,通常发生在根的形成受到完全或部分抑制的情况中.  相似文献   
38.
采用DNA-蛋白质体外吸附的方法研究伴刀豆球蛋白激活小鼠胸腺T淋巴细胞增殖过程中c-myc与核骨架蛋白的结合.实验结果显示,c-myc与核骨架蛋白的结合具有特异性,在淋巴细胞激活过程中c-myc与P34/P36核骨架蛋白及核纤层蛋白结合,并发生动态变化.  相似文献   
39.
The relative efficiencies of different protein-coding genes of the mitochondrial genome and different tree-building methods in recovering a known vertebrate phylogeny (two whale species, cow, rat, mouse, opossum, chicken, frog, and three bony fish species) was evaluated. The tree-building methods examined were the neighbor joining (NJ), minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML), and both nucleotide sequences and deduced amino acid sequences were analyzed. Generally speaking, amino acid sequences were better than nucleotide sequences in obtaining the true tree (topology) or trees close to the true tree. However, when only first and second codon positions data were used, nucleotide sequences produced reasonably good trees. Among the 13 genes examined, Nd5 produced the true tree in all tree-building methods or algorithms for both amino acid and nucleotide sequence data. Genes Cytb and Nd4 also produced the correct tree in most tree-building algorithms when amino acid sequence data were used. By contrast, Co2, Nd1, and Nd41 showed a poor performance. In general, large genes produced better results, and when the entire set of genes was used, all tree-building methods generated the true tree. In each tree-building method, several distance measures or algorithms were used, but all these distance measures or algorithms produced essentially the same results. The ME method, in which many different topologies are examined, was no better than the NJ method, which generates a single final tree. Similarly, an ML method, in which many topologies are examined, was no better than the ML star decomposition algorithm that generates a single final tree. In ML the best substitution model chosen by using the Akaike information criterion produced no better results than simpler substitution models. These results question the utility of the currently used optimization principles in phylogenetic construction. Relatively simple methods such as the NJ and ML star decomposition algorithms seem to produce as good results as those obtained by more sophisticated methods. The efficiencies of the NJ, ME, MP, and ML methods in obtaining the correct tree were nearly the same when amino acid sequence data were used. The most important factor in constructing reliable phylogenetic trees seems to be the number of amino acids or nucleotides used.   相似文献   
40.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号